Enhanced Vehicle Identification Utilizing Sensor Fusion and Statistical Algorithms

نویسندگان

  • Stephane Roussel
  • Peter Schuster
  • Christopher Clark
چکیده

Several studies in the area of vehicle detection and identification involve the use of probabilistic analysis and sensor fusion. While several sensors utilized for identifying vehicle presence and proximity have been researched, their effectiveness in identifying vehicle types has remained inadequate. This study presents the utilization of an ultrasonic sensor coupled with a magnetic sensor and the development of statistical algorithms to overcome this limitation. Mathematical models of both the ultrasonic and magnetic sensors were constructed to first understand the intrinsic characteristics of the individual sensors and also to provide a means of simulating the performance of the combined sensor system and to facilitate algorithm development. Preliminary algorithms that utilized this sensor fusion were developed to make inferences relating to vehicle proximity as well as type. It was noticed that while it helped alleviate the limitations of the individual sensors, the algorithm was affected by high occurrences of false positives. Also, since sensors carry only partial information about the surrounding environment and their measured quantities are partially corrupted with noise, probabilistic techniques were employed to extend the preliminary algorithms to include these sensor characteristics. These statistical techniques were utilized to reconstruct partial state information provided by the sensors and to also filter noisy measurement data. This probabilistic approach helped to effectively utilize the advantages of sensor fusion to further enhance the reliability of inferences made on vehicle identification. In summary, the study investigated the enhancement of vehicle identification through the use of sensor fusion and statistical techniques. The algorithms developed showed encouraging results in alleviating the occurrences of false positive inferences. One of the several applications of this study is in the use of ultrasonic-magnetic sensor combination for advanced traffic monitoring such as smart toll booths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks

The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...

متن کامل

Sensor Resource Management with Hierarchical Target Valuation Models

Advanced optimization-based algorithms for sensor resource management have been previously developed and presented. These algorithms offer the potential for automating the sensor control process in response to level 1 sensor data fusion (object or track-level) estimates. In this paper, a hierarchical target valuation model that estimates target value on the basis of not only level 1 fusion info...

متن کامل

Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehi...

متن کامل

Simplified clustering algorithms for RFID networks

The problem of clustering in networks of RFID readers in particular and active sensors in general is addressed using techniques from sensor data fusion. Two algorithms are provided that are simple and do not need extensive computation. For smaller networks these algorithms can be implemented without any computational assistance. The constraints these algorithms place on the time scheduling of r...

متن کامل

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009